An optimization technique on pseudorandom generators based on chaotic iterations

نویسندگان

  • Jacques M. Bahi
  • Xiaole Fang
  • Christophe Guyeux
چکیده

Internet communication systems involving cryptography and data hiding often require billions of random numbers. In addition to the speed of the algorithm, the quality of the pseudo-random number generator and the ease of its implementation are common practical aspects. In this work we will discuss how to improve the quality of random numbers independently from their generation algorithm. We propose an additional implementation technique in order to take advantage of some chaotic properties. The statistical quality of our solution stems from some well-defined discrete chaotic iterations that satisfy the reputed Devaney’s definition of chaos, namely the chaotic iterations technique. Pursuing recent researches published in the previous International Conference on Evolving Internet (Internet 09, 10, and 11), three methods to build pseudorandom generators by using chaotic iterations are recalled. Using standard criteria named NIST and DieHARD (some famous batteries of tests), we will show that the proposed technique can improve the statistical properties of a large variety of defective pseudorandom generators, and that the issues raised by statistical tests decrease when the power of chaotic iterations increase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FPGA acceleration of a pseudorandom number generator based on chaotic iterations

As any well-designed information security application uses a very large quantity of good pseudorandom numbers, inefficient generation of these numbers can be a significant bottleneck in various situations. In previous research works, a technique that applies welldefined discrete iterations, satisfying the reputed Devaney’s definition of chaos, has been developed. It has been proven that the gen...

متن کامل

FPGA Design for Pseudorandom Number Generator Based on Chaotic Iteration used in Information Hiding Application

Lots of researches indicate that the inefficient generation of random numbers is a significant bottleneck for information communication applications. Therefore, Field Programmable Gate Array (FPGA) is developed to process a scalable fixed-point method for random streams generation. In our previous researches, we have proposed a technique by applying some well-defined discrete chaotic iterations...

متن کامل

Suitability of chaotic iterations schemes using XORshift for security applications

The design and engineering of original cryptographic solutions is a major concern to provide secure information systems. In a previous study, we have described a generator based on chaotic iterations, which uses the well-known XORshift generator. By doing so, we have improved the statistical performances of XORshift and make it behave chaotically, as defined by Devaney. The speed and security o...

متن کامل

On Pseudo-Random Number Generators Using Elliptic Curves and Chaotic Systems

Elliptic Curve Cryptography (ECC) is a relatively recent branch of cryptography which is based on the arithmetic on elliptic curves and security of the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP). Elliptic curve cryptographic schemes are public-key mechanisms that provide encryption, digital signature and key exchange capabilities. Elliptic curve algorithms are also applie...

متن کامل

A Pseudo Random Numbers Generator Based on Chaotic Iterations: Application to Watermarking

In this paper, a new chaotic pseudo-random number generator (PRNG) is proposed. It combines the well-known ISAAC and XORshift generators with chaotic iterations. This PRNG possesses important properties of topological chaos and can successfully pass NIST and TestU01 batteries of tests. This makes our generator suitable for information security applications like cryptography. As an illustrative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.08773  شماره 

صفحات  -

تاریخ انتشار 2017